MATHEMATICS

MFP3

Unit Further Pure 3

Wednesday 21 January 20091.30 pm to 3.00 pm

For this paper you must have:

- a 12-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MFP3.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 The function $y(x)$ satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}(x, y)
$$

where

$$
\mathrm{f}(x, y)=\frac{x^{2}+y^{2}}{x+y}
$$

and

$$
y(1)=3
$$

(a) Use the Euler formula

$$
y_{r+1}=y_{r}+h \mathrm{f}\left(x_{r}, y_{r}\right)
$$

with $h=0.2$, to obtain an approximation to $y(1.2)$.
(b) Use the improved Euler formula

$$
y_{r+1}=y_{r}+\frac{1}{2}\left(k_{1}+k_{2}\right)
$$

where $k_{1}=h \mathrm{f}\left(x_{r}, y_{r}\right)$ and $k_{2}=h \mathrm{f}\left(x_{r}+h, y_{r}+k_{1}\right)$ and $h=0.2$, to obtain an approximation to $y(1.2)$, giving your answer to four decimal places.
(5 marks)

2 (a) Show that $\frac{1}{x^{2}}$ is an integrating factor for the first-order differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}-\frac{2}{x} y=x \tag{3marks}
\end{equation*}
$$

(b) Hence find the general solution of this differential equation, giving your answer in the form $y=\mathrm{f}(x)$.

3 The diagram shows a sketch of a loop, the pole O and the initial line.

The polar equation of the loop is

$$
r=(2+\cos \theta) \sqrt{\sin \theta}, \quad 0 \leqslant \theta \leqslant \pi
$$

Find the area enclosed by the loop.

4 (a) Use integration by parts to show that $\int \ln x \mathrm{~d} x=x \ln x-x+c$, where c is an arbitrary constant.
(b) Hence evaluate $\int_{0}^{1} \ln x \mathrm{~d} x$, showing the limiting process used.

5 The diagram shows a sketch of a curve C, the pole O and the initial line.

The curve C has polar equation

$$
r=\frac{2}{3+2 \cos \theta}, \quad 0 \leqslant \theta \leqslant 2 \pi
$$

(a) Verify that the point L with polar coordinates $(2, \pi)$ lies on C.
(b) The circle with polar equation $r=1$ intersects C at the points M and N.
(i) Find the polar coordinates of M and N.
(ii) Find the area of triangle $L M N$.
(c) Find a cartesian equation of C, giving your answer in the form $9 y^{2}=\mathrm{f}(x)$. (5 marks)

6 The function f is defined by $\mathrm{f}(x)=\mathrm{e}^{2 x}(1+3 x)^{-\frac{2}{3}}$.
(a) (i) Use the series expansion for e^{x} to write down the first four terms in the series expansion of $\mathrm{e}^{2 x}$.
(ii) Use the binomial series expansion of $(1+3 x)^{-\frac{2}{3}}$ and your answer to part (a)(i) to show that the first three non-zero terms in the series expansion of $\mathrm{f}(x)$ are $1+3 x^{2}-6 x^{3}$.
(5 marks)
(b) (i) Given that $y=\ln (1+2 \sin x)$, find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(4 marks)
(ii) By using Maclaurin's theorem, show that, for small values of x,

$$
\begin{equation*}
\ln (1+2 \sin x) \approx 2 x-2 x^{2} \tag{2marks}
\end{equation*}
$$

(c) Find

$$
\lim _{x \rightarrow 0} \frac{1-\mathrm{f}(x)}{x \ln (1+2 \sin x)}
$$

7 (a) Given that $x=\mathrm{e}^{t}$ and that y is a function of x, show that

$$
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} t}
$$

(b) Hence show that the substitution $x=\mathrm{e}^{t}$ transforms the differential equation

$$
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}=10
$$

into

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-5 \frac{\mathrm{~d} y}{\mathrm{~d} t}=10 \tag{2marks}
\end{equation*}
$$

(c) Find the general solution of the differential equation $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-5 \frac{\mathrm{~d} y}{\mathrm{~d} t}=10$.
(d) Hence solve the differential equation $x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}=10$, given that $y=0$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=8$ when $x=1$.

END OF QUESTIONS

